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ABSTRACT

To better understand the influence of microscale geochemical and microstructural relation-
ships on the bulk petrophysical properties of unconventional shale systems, core samples 
from four producing North American formations were cross-sectioned with an argon ion 
polisher and imaged with a field emission scanning electron microscope (FE-SEM) using a 
variety of complementary detectors. We demonstrate distinct advantages of the ion-polishing 
technique for the preservation of the internal shale structure. Moreover, we show how such 
preparation affords a wider choice of imaging options for both chemical and structural char-
acterization, such as backscatter electron observation at varying beam potentials coupled 
with x-ray and cathodoluminescence spectroscopic techniques.

Erdman, Natasha, and Nicholas Drenzek, 2013, Integrated preparation and imaging 
techniques for the microstructural and geochemical characterization of shale by 
scanning electron microscopy, in W. Camp, E. Diaz, and B. Wawak, eds., Electron 
microscopy of shale hydrocarbon reservoirs: AAPG Memoir 102, p. 7–14.

INTRODUCTION

Gas and oil production from shale formations has be-
come an increasing component of North American 
energy supply over the past ten years and may like-
wise rebalance the global energy portfolio in the com-
ing decade. The fundamental microstructural and 
geochemical properties of shales differ markedly from 
traditional petroleum reservoirs, however, presenting 
significant technical challenges that today hinder full 

exploitation. Two of the more important differences lie 
in the small dimension and mixed wettability of their 
pore network (Passey et al., 2010), characteristics that 
themselves arise from the abundant micrometer- to 
nanometer-size clay mineral grains and organic matter 
macerals interspersed throughout more conventional 
carbonate or sandstone matrices. Not surprisingly, 
then, the application and interpretation of many con-
ventional analysis techniques such as mercury intru-
sion porosimetry have proven to be more complex for 

1 Previous address: Schlumberger-Doll Research, 1 Hampshire St., Cambridge, Massachusetts, 02139, U.S.A.
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2009; Wang and Reed, 2009; Shabro et al., 2011; Sun  
et al., 2011). This chapter seeks to review the state of the 
art in such SEM preparation and analysis techniques 
for shales through a comparative case study of sam-
ples collected from several producing North American 
gas shale plays.

METHODS

Cores from the Marcellus, Haynesville, Woodford, 
and Barnett formations were collected, slabbed, sub-
sampled into aliquots of millimeter-size fragments 
from 5-cm (1.9685-in.) depth intervals, split, and fur-
ther pulverized for analysis (Table 2). Bulk density 
was measured using the Archimedes method. Val-
ues for porosity (f) were acquired via gas intrusion 
(Handwerger et al., 2011) and total organic carbon 
(TOC) contents were measured by combustion el-
emental analysis (EA) following carbonate removal 
using the HCl fumigation method (Brodie et al., 2011). 
Thermal maturity Tmax  values were acquired by Rock-
Eval pyrolysis (Behar et al., 2001), while vitrinite 
reflectance (VRO), and bitumen reflectance (VRE) 
measurements were obtained using standard organic 
petrology methods (Schieber, 2001). Mineralogy was 
measured by x-ray diffraction (XRD) (Ruessink and 
Harville, 1992).

Similar to established optical petrology techniques, 
several milligrams of pulverized material from the 
same aliquots used for bulk measurements were em-
bedded in epoxy resin to mechanically stabilize them 
and polished using a broad argon ion beam cross-
section polisher (CP) normal to the intended SEM 
imaging direction at 5 kV for 4 h. This workflow pro-
duced a typical cross-sectioned area of 1.5 3 0.5 mm 
with minimal smearing or deformation (Figure 1) (Er-
dman et al., 2006a, b; Ogura et al., 2007; Loucks et al., 
2009; Sondergeld et al., 2010). Whereas any features 
of the native shale fabric beyond the 150-mm win-
dow were compromised through pulverization, those 

such critical petrophysical data in organic matter- and 
clay mineral-rich shale reservoirs (e.g., Dacy, 2010).

Scanning electron microscopy (SEM; see Table 1 
for a list of most of the acronyms used in this chap-
ter), is well suited to study the complex distribu-
tion and association of organic, mineral, and pore 
phases at the nanoscale that govern multiphase fluid 
transport in shale formations. The application of on-
board backscattered electron (BSE), energy disper-
sive spectroscopy (EDS), and cathodoluminescence 
(CL) detectors to ion cross-polished sample surfaces 
has opened an unparalleled window into such rock 
“fabric” (Ogura et al., 2007; Bustin and Bustin, 2008; 
Loucks et al., 2009; Wang and Reed, 2009; Curtis  
et al., 2010; Loucks et al., 2010; Milner et al., 2010; 
Sondergeld et al., 2010; Curtis et al., 2011a, b), which is 
in turn critical to describing the pore saturations, flow 
mechanisms, and production rates of fluids therein 
(O’Brien et al., 1994, 2002; Javadpour et al., 2007; 
Javadpour, 2009; Loucks et al., 2009; Ross and Bustin, 

Table 1. Alphabetical List of Common Acronyms 
Used in This Text

Acronym Full Name

BSE backscattered electron
CL cathodoluminescence
CP cross-section polisher
EA elemental analysis
EDS energy-dispersive spectroscopy
FE field emission
PMT photomultiplier tube
SDD silicon drift detector
SE secondary electron
SEM scanning electron microscopy
TOC total organic carbon
VRO vitrinite reflectance
VRE vitrinite reflectance equivalent
XRD x-ray diffraction

Table 2. Bulk geophysical and geochemical characteristics for samples under study

Sample rB (g/cm3) f TOC RO (%) TMAX (°C) Quartz Carbonate† Clay§ Pyrite

Marcellus 2.57 6.5 11 2.0 501 24 10 51 8
Haynesville 2.41 11.8 5 2.4* 512 27 34 29 4
Woodford 1.93 4.8 23 0.6 435 25 9 48 7
Barnett 2.47 3.9 5 0.6 441 58 38 4 1

†Calcite 1 dolomite 1 ankerite.
§Illite 1 smectite 1 kaolinite 1 chlorite 1 biotite 1 glauconite 1 muscovite.
*Solid pyrobitumen value.
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Because major shale constituents such as organic 
matter, clay minerals, quartz, carbonate, and pyrite 
exhibit various degrees of hardness, traditional me-
chanical preparation (saw cutting, grinding, abrasive 
polishing, microtome cutting, etc.) tends to result in 
uneven surfaces as a result of smearing and/or pit-
ting. Figure 2 shows an example of a Marcellus shale 
specimen polished with silicon carbide 1200-grit pa-
per versus the same sample after CP preparation. 
The comparison clearly demonstrates that inappro-
priate sample preparation will confound subsequent 
attempts to image the exact locations of organic 
matter macerals and mineral grains along with 
both their internal and interfacial pore networks. In 
a study comparing native versus CP prepared sur-
faces, Milner et al. (2010) likewise concluded that 
such assessments of shale fabric are impossible with-
out CP pretreatment.

Figure 3 shows relatively low magnification over-
view BSE images of CP prepared samples from the 
four formations investigated here. Backscatter images 
tend to provide better visualization of the various 
components of shale samples for two reasons: (1) the 
polished samples are very flat, thus providing mini-
mal topography and relief-based contrast on which 
secondary electron (SE) images rely for interpretation, 
and (2) the BSE signal contrast is indicative of compo-
sitional differences—bright and dark areas indicate 
high and low atomic number materials, respectively. 
For example, kerogen and bitumen show up as dark 
gray regions while their chemically and spatially as-
sociated pyrite crystals are bright white, therein af-
fording a means to readily differentiate these low and 
high atomic number components from the rest of the 
complex, intermediate atomic number mineral mi-
lieu (e.g., Figure 3). Nonetheless, the lower grayscale 
contrast among these other constituents and the over-
all compositional heterogeneity of shale specimens 
present a significant challenge to BSE studies of shale 
geochemical and microstructural relationships alone. 
Although the advent of EDS elemental mapping has 

Figure 1. Principle of CP (cross-section polisher) operation. 
A specimen is masked so that a small portion (few tens of 
micrometers) protrudes from the mask. The exposed area is 
ablated with the argon ion beam and results in a specimen 
cross section with minimal artifacts.

viewed within the fragments less than 150 mm them-
selves should remain representative at this smaller 
scale. The resulting surfaces were then coated with 
less than a 100-Å thick elemental carbon film via vac-
uum evaporator to mitigate charge buildup and were 
examined with a Schottky field emission scanning 
electron microscope (FE-SEM) under high vacuum 
(1024 Pa) using beam-accelerating voltages of 8 and 
2 kV and a high-resolution, low-angle detector. Cor-
responding EDS elemental maps were then obtained 
using a 50-mm2 silicon drift detector (SDD) at 8 kV for 
three frames (289 s per frame) with drift correction en-
gaged. High-resolution CL and companion grayscale 
BSE images were also acquired using a FE-SEM sys-
tem with a KE Centaurus CL detector containing a 
photomultiplier tube (PMT) set to detect photons in 
the 185- to 850-nm range.

RESULTS AND DISCUSSION

Cross-section polishing is an indispensable advance-
ment for fine-scale SEM investigations of the distri-
butions and associations of organic matter, minerals, 
and pores in highly consolidated geologic samples. 

Figure 2. Field emission scanning electron mi-
croscope (FE-SEM) images of Marcellus shale 
specimen before (left) and after (right) ion beam 
milling. The image on the left was taken with an 
Everhart-Thornley secondary electron detector and 
shows a substantial amount of relief associated 
with mechanical abrasion. The image on the right 
shows a smooth, flat surface following ion milling.
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(e.g., 32500) BSE images can be collected at 5000 3 
4000 (5 3 4K) pixel resolution, allowing the image to 
be expanded to effectively 312,500 without any sig-
nificant loss of pixel resolution. The same can be done 
with EDS, wherein maps can be collected at up to 4 3 
4K resolution. These data sets can then be integrated 
to simultaneously yield a broad overview of shale 
geochemical composition along with information on 
associated microstructural features. Alternatively, a 
series of neighboring high-magnification, high-pixel-
resolution images and EDS maps can be acquired in 
automated fashion using current FE-SEM software 
and subsequently combined into a large-scale mon-
tage (see Ogura et al., 2010, for a case study using brain 
tissue). An example of 2 3 2 tiled BS montage images 
collected at 5 3 4K resolution (46 3 15 mm viewing 
area) for the Marcellus shale is shown in Figure 4a, 
along with corresponding EDS Ca Ka spectral over-
lays documenting the locations of calcite, dolomite, 
and aragonite. Figure 4b demonstrates how a 2.5-µm2 
portion of the same montage can be used to examine 
organic matter- and mineral-hosted porosity in more 
detail without any loss of resolution. This approach 
can be further utilized with more rigorous BSE/EDS 
segmentation algorithms to relate microscale composi-
tional and structural features of shales to their macro-
scale petrophysical manifestations.

Using the methods described, some general micro-
scale compositional and structural features can be 
delineated in each of the shale formations studied 
here. The siliceous Barnett, for example, displays 
abundant organic-matter-hosted pores with less min-
eral porosity, similar to previous observations (Loucks  
et al., 2009; Wang and Reed, 2009; Loucks et al., 2010; 
Milner et al., 2010; Sondergeld et al., 2010), whereas 
micrometer- to nanometer-size pores in the argilla-
ceous Marcellus sample appear to be predominantly 
associated with organic-clay mineral interfaces as like-
wise reported by previous studies (Milner et al., 2010; 
Curtis et al., 2011a). These mixed-porosity systems 
are bracketed by the behavior of the calcareous Hay-
nesville, for which the high level of thermal matura-
tion (Tmax 5 512°C, VRE 5 2.4%) has led to a greater 
abundance of larger organic matter-hosted pores; 
and of the carbonaceous Woodford shale, in which a 
pore network has yet to clearly develop in its abun-
dant yet thermally immature (Tmax 5 435°C, VRE 5 
0.6%) organic matter inventory. Indeed, mineral-based 
pores (perhaps volumetrically dominated by diage-
netic pyrite) may represent the only viable storage 
and migration pathway for oil and wet gas production 
from relatively low-maturity shale plays or sections of 
a play. In any case, these microscale descriptions are 
qualitatively consistent with bulk compositional and 

Figure 3. Backscatter field emission scanning electron 
microscope (FE-SEM) images of the specimens from four 
different formations: (a) Barnett, (b) Marcellus, (c) Haynes-
ville, and (d) Woodford. All images were taken at 8 kV.

Figure 4. (a) Montage of 2 3 2 image tiles and correspond-
ing energy-dispersive spectroscopy (EDS) maps of calcium 
(pink) distribution in the Marcellus shale. Both the back-
scattered electron (BSE) images and the EDS maps were 
acquired with high pixel resolution, so that the images can 
be later examined at higher magnification without loss of 
resolution. Data acquired at 8 kV using 50-mm2 Oxford 
silicon drift detector (SDD). (b) A 2.5-mm2 area zoom-in 
of BSE image showing organic matter (OM) and mineral 
porosity.

helped to further define these relationships (Figure 4), 
the low magnification required to yield a representa-
tive sampling area for compositional analysis obscures 
the corresponding nanoscale organic and mineral pore 
networks thought responsible for most petroleum 
storage and flow in shales. The user must therefore de-
vise an approach that would combine these seemingly 
diverging needs into a single technique.

The acquisition of companion sets of high-pixel-
resolution BSE and EDS images at low magnification 
is one such solution. For instance, low-magnification 
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calcium (as rough proxies for organic matter, quartz, 
and calcite, respectively) at 8 and 2 kV (Figure 6).

Utilization of low beam voltages also reduces radia-
tion damage to the shale structure itself. For example, 
our experience demonstrated that morphologically 
distinct calcite fragments have been shown to be sus-
ceptible to degradation under a 5-kV beam but encum-
ber no apparent alteration at only 2 kV. Nonetheless, 
companion EDS mapping of all major elemental con-
stituents of shale (i.e., silicon, calcium, aluminum, 
magnesium, potassium, sodium, iron, sulfur, oxy-
gen, and carbon) still requires the collection of x-ray 
spectra across energies of up to approximately 8 kV 
depending on whether K or L x-ray lines are used for 
identification and quantification. For this application, 
care should thus be taken to minimize the amount of 
time shale samples are exposed to high beam currents 
and accelerating voltages by employing a large, high-
efficiency SDD.

Complimentary information on shale elemental 
composition can sometimes be obtained at lower volt-
ages and superior resolution using SEM-mounted CL 
detectors. In CL, the interaction of the primary elec-
tron beam with the specimen results in the promotion 

petrophysical properties measured on macroscale aliq-
uots of the same material (Table 2). X-ray diffraction 
analysis, for example, indicates predominantly quartz, 
clay mineral, carbonate, and organic matter contents 
for the Barnett, Marcellus, Haynesville, and Woodford 
samples, respectively. In fact, the very high (23 wt%) 
TOC content of the Woodford as both measured by 
combustion EA and reflected at the SEM scale (Fig-
ure 3) is further expressed in a marked 0.5-g cm23 
depression in bulk density relative to its lower TOC 
counterparts (Table 2). Organic matter maturation also 
appears to play a dominant role in setting the compar-
atively high porosity of 11.8% measured for the Hay-
nesville shale.

Given the reputed importance of organic pore 
networks for petroleum storage and flow in shale 
reservoirs (O’Brien et al., 1994, 2002; Javadpour, 2009; 
Loucks et al., 2009; Wang and Reed, 2009; Shabro  
et al., 2011), SEM has become an increasingly im-
portant tool to investigate their basic structure and 
distribution. Even so, their small size has typically de-
manded high accelerating voltages (i.e., . 15 kV) cou-
pled with BSE detection to achieve the nanometer-size 
feature resolution needed for accurate characteriza-
tion. Yet the large volume of interaction (up to sev-
eral cubic micrometers) produced at high acceleration 
voltages along with the low BSE grayscale contrast 
between these pores and the surrounding organic mat-
ter matrix can lead to subjective segmentation work-
flows. New developments in FE-SEM technology (e.g., 
Erdman et al., 2009, 2010) allow the user to maintain 
single-nanometer spatial resolution while imaging 
the specimen and performing microanalysis at lower 
accelerating voltages to reduce the interaction vol-
ume and improve surface contrast. Figure 5 shows a 
comparison of BSE images taken at 8 and 2 kV for the 
same Woodford shale specimen. The arrows point to 
features observed at 8 kV that completely disappear 
at 2 kV following reduction in the beam-specimen in-
teraction volume. This behavior can also be modeled 
by utilizing the Monte Carlo simulations (Hovington  
et al., 1997) of beam interaction with carbon, silicon, and 

Figure 5. Comparison between (a) 8-kV and (b) 2-kV 
beam accelerating voltage observations of the 
Woodford shale specimen acquired across the 
same field of view. Arrows in (b) highlight pores 
that were previously obscured by a larger depth of 
investigation at 8 kV.

Figure 6. Monte Carlo simulations (CASINO®) of secondary 
(blue) and backscattered (red) electron beam-specimen 
interactions in three components of shale (organic mat-
ter [OM], calcite, and clay minerals) at both high (8-kV) 
and low (2-kV) beam accelerating voltages. Note greater 
interaction volume at higher voltage. CaCO3 = calcium 
carbonate.
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organic-matter-hosted nanopores on thermal matu-
ration. Although focused ion milling combined with 
ever-more-sophisticated image alignment/segmenta-
tion software has garnered more recent attention be-
cause of its ability to render true three-dimensional 
(3-D) reconstructions of shale matrices (e.g., Elgmati 
et al., 2011a, b), the nanometer- to micrometer-level 
areas of investigation to which this technique is con-
fined (along with the high cost of acquisition) has so 
far limited its widespread use in shale research. Future 
developments should therefore focus on comparing 
the upscaling potential of two-dimensional versus 3-D 
microscale information to core or wellbore log meas-
urements as well as integrating SEM instrumentation 
with dynamic experiments such as hydraulic fractur-
ing, multiphase fluid imbibition, and pyrolytic artifi-
cial maturation.
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